Reviewing models of auxin canalization in the context of leaf vein pattern formation in Arabidopsis.
نویسندگان
چکیده
In both plants and animals vein networks play an essential role in transporting nutrients. In plants veins may also provide mechanical support. The mechanism by which vein patterns are formed in a developing leaf remains largely unresolved. According to the canalization hypothesis, a signal inducing vein differentiation is transported in a polar manner and is channeled into narrow strands. Since inhibition of auxin transport affects venation patterns, auxin is likely to be part of the signal involved. However, it is not clear whether the canalization hypothesis, initially formulated over 25 years ago, is compatible with recent experimental data. In this paper we focus on three aspects of this question, and show that: (i) canalization models can account for an acropetal development of the midvein if vein formation is sink-driven; (ii) canalization models are in agreement with venation patterns resulting from inhibited auxin transport and (iii) loops and discontinuous venation patterns can be obtained assuming proper spacing of discrete auxin sources.
منابع مشابه
A series of novel mutants of Arabidopsis thaliana that are defective in the formation of continuous vascular network: calling the auxin signal flow canalization hypothesis into question.
For the genetic analysis of molecular mechanisms underlying temporal and spatial regulation of vascular pattern formation, we isolated mutants of Arabidopsis thaliana that are impaired in vascular patterning. Microscopic examination of the cotyledonary venation of 3,400 M(3) lines led to the identification of 12 mutant lines. Genetic analysis of 8 of these mutant lines indicated that vein patte...
متن کاملThe FORKED genes are essential for distal vein meeting in Arabidopsis.
As in most dicotyledonous plants, the leaves and cotyledons of Arabidopsis have a closed, reticulate venation pattern. This pattern is proposed to be generated through canalization of the hormone auxin. We have identified two genes, FORKED 1 (FKD1) and FORKED 2 (FKD2), that are necessary for the closed venation pattern: mutations in either gene result in an open venation pattern that lacks dist...
متن کاملPatterning of Leaf Vein Networks by Convergent Auxin Transport Pathways
The formation of leaf vein patterns has fascinated biologists for centuries. Transport of the plant signal auxin has long been implicated in vein patterning, but molecular details have remained unclear. Varied evidence suggests a central role for the plasma-membrane (PM)-localized PIN-FORMED1 (PIN1) intercellular auxin transporter of Arabidopsis thaliana in auxin-transport-dependent vein patter...
متن کاملAuxin is required for leaf vein pattern in Arabidopsis.
To investigate possible roles of polar auxin transport in vein patterning, cotyledon and leaf vein patterns were compared for plants grown in medium containing polar auxin transport inhibitors (N-1-naphthylphthalamic acid, 9-hydroxyfluorene-9-carboxylic acid, and 2,3,5-triiodobenzoic acid) and in medium containing a less well-characterized inhibitor of auxin-mediated processes, 2-(p-chlorophyno...
متن کاملThe Role of Elastic Stresses on Leaf Venation Morphogenesis
We explore the possible role of elastic mismatch between epidermis and mesophyll as a driving force for the development of leaf venation. The current prevalent 'canalization' hypothesis for the formation of veins claims that the transport of the hormone auxin out of the leaves triggers cell differentiation to form veins. Although there is evidence that auxin plays a fundamental role in vein for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 44 5 شماره
صفحات -
تاریخ انتشار 2005